Faculdade de Economia da Universidade de Coimbra

1º Teste – Álgebra Linear – Licenciatura em Economia

2011.Outubro	Duração: 30 minutos	Turma:
Nome do Aluno:		N.°

NÃO É PERMITIDO O USO DE CALCULADORAS OU TELEMÓVEIS

1. Considere, em
$$\mathbb{R}^4$$
, os vectores $x_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $x_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix}$, $x_3 = \begin{bmatrix} 1 \\ 3 \\ 1 \\ 3 \end{bmatrix}$ e $x_4 = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$.

- a) Mostre que:
- (a-i) o vector x_3 é uma combinação linear dos vectores x_1 e x_2 ;
- (a-ii) o vector x_4 <u>não</u> é uma combinação linear dos vectores x_1 e x_2 ;
- (a-iii) o vector x_4 é ortogonal ao vector $5x_1 3x_2$;
- b) Seja $y_4 = \alpha x_4$, onde $\alpha \in \mathbb{R}$. Determine α de modo que $||y_4|| = 1$.
- 2. Sejam

$$u = (3 - k, -1, 0), v = (0, -1, 3 - k)$$

 $w = (-1, 2 - k, -1) e z = (2, 1, -k)$

quatro vectores de \mathbb{R}^3 e k um número real. Determine para que valores de $k \in \mathbb{R}$ se verifica que:

- a) u + v = w;
- b) ||v|| = 1;
- c) $\{u, w, z\}$ é um conjunto ortogonal;
- d) o vector u é uma combinação linear dos vectores v e w.