Álgebra Linear [ECONOMIA]	
Teste 2, regime de Avaliação Mista	

Duração: 45 minutos

NOME: Número: Turma:

Não é permitido o uso de calculadoras nem de telemóveis.

1. Considere o sistema de equações lineares seguinte:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 1\\ 3x_1 + 5x_2 + 7x_3 + 3x_4 &= 0\\ x_1 + x_2 + 3x_3 + 2x_4 &= 3\\ 3x_1 + 5x_2 + 9x_3 + 4x_4 &= 2 \end{cases}.$$

- (a) Recorrendo ao método de eliminação de Gauss resolva o sistema e classifique-o.
- (b) Transforme o sistema dado num sistema possível e determinado, alterando apenas uma das suas quatro equações. Determine o conjunto solução desse novo sistema, bem como o núcleo da respetiva matriz dos coeficientes.
- 2. Considere o seguinte sistema, onde α é um parâmetro real

$$\begin{cases} x + \alpha y + \alpha z &= 0 \\ x + y + \alpha z &= \alpha^2 \\ \alpha x + y + z &= 0 \end{cases}.$$

- (a) Discuta o sistema para todos os valores de α .
- (b) Escolha um valor de α **não nulo** para o qual o sistema seja possível e determinado. Para tal valor, seja A a matriz do sistema.
 - i. Determine A^{-1} pelo método de Gauss-Jordan.
 - ii. Resolva o sistema dado para o valor de α que escolheu, recorrendo à matriz A^{-1} .

Nota: Caso não tenha conseguido resolver (a), tome $\alpha = 2$ para resolver (b).

Todas as alíneas valem 4 valores

Indique os cálculos auxiliares, responda de forma clara e justifique as suas conclusões.

Álgebra Linear [ECONOMIA]	
Teste 2, regime de Avaliação Mista	

Duração: 45 minutos

NOME:	Número:	Turma:

Não é permitido o uso de calculadoras nem de telemóveis.

1. Considere o sistema de equações lineares seguinte:

$$\begin{cases} x + y + 3z + 2t &= 3\\ -2x - 4y - 6z - 2t &= 1\\ x + y + z + t &= 1\\ -2y - 4z &= 3 \end{cases}.$$

- (a) Recorrendo ao método de eliminação de Gauss resolva o sistema e classifique-o.
- (b) Transforme o sistema dado num sistema possível e determinado, alterando apenas uma das suas quatro equações. Determine o conjunto solução desse novo sistema, bem como o núcleo da respetiva matriz dos coeficientes.
- 2. Considere o seguinte sistema, onde β é um parâmetro real

$$\begin{cases} u + \beta v + \beta w &= 0\\ 2u + (1+\beta)v + 2\beta w &= \beta^2\\ \beta u + v + w &= 0 \end{cases}.$$

- (a) Discuta o sistema para todos os valores de β .
- (b) Escolha um valor de β **não nulo** para o qual o sistema seja possível e determinado. Para tal valor, seja B a matriz do sistema.
 - i. Determine B^{-1} pelo método de Gauss-Jordan.
 - ii. Resolva o sistema dado para o valor de β que escolheu, recorrendo à matriz B^{-1} .

Nota: Caso não tenha conseguido resolver (a), tome $\beta = 2$ para resolver (b).

Todas as alíneas valem 4 valores

Indique os cálculos auxiliares, responda de forma clara e justifique as suas conclusões.

Álgebra Linear [ECONOMIA]
Teste 2, regime de Avaliação Mista

Duração: 45 minutos

NOME: Número: Turma:	NOME: Número: Turma:
----------------------	----------------------

Não é permitido o uso de calculadoras nem de telemóveis.

1. Considere o sistema de equações lineares seguinte:

$$\begin{cases}
-x - 2y - t &= -1 \\
-2x - 3y - 2z - 2t &= -2 \\
x + z + t &= 1 \\
x + y + 2z + t &= 1
\end{cases}$$

- (a) Recorrendo ao método de eliminação de Gauss resolva o sistema e classifique-o.
- (b) Transforme o sistema dado num sistema possível e determinado, alterando apenas uma das suas quatro equações. Determine o conjunto solução desse novo sistema, bem como o núcleo da respetiva matriz dos coeficientes.
- 2. Considere o seguinte sistema, onde a é um parâmetro real

$$\begin{cases} x_1 + ax_2 + ax_3 &= 0\\ -2x_1 + (a^2 - a)x_2 + (a^2 - a)x_3 &= 0\\ ax_1 + a^2x_2 + (a^2 + a)x_3 &= (a+1)^2 \end{cases}.$$

- (a) Discuta o sistema para todos os valores de a.
- (b) Escolha um valor de $a \neq -1$ para o qual o sistema seja possível e determinado. Para tal valor, seja C a matriz do sistema.
 - i. Determine C^{-1} pelo método de Gauss-Jordan.
 - ii. Resolva o sistema dado para o valor de a que escolheu, recorrendo à matriz C^{-1} .

Nota: Caso não tenha conseguido resolver (a), tome a=2 para resolver (b).

Todas as alíneas valem 4 valores

Indique os cálculos auxiliares, responda de forma clara e justifique as suas conclusões.

Álgebra Linear [ECONC	OMIA]
Teste 2, regime de Avalia	ção Mista

Duração: 45 minutos

NOME: Número: Turma:	NOME: Número: Turma:
----------------------	----------------------

Não é permitido o uso de calculadoras nem de telemóveis.

1. Considere o sistema de equações lineares seguinte:

$$\begin{cases} a+b+2c+d &= 1\\ 2a+3b+2c+2d &= 2\\ a+3b+c+d &= 1\\ -a-2b-d &= -1 \end{cases}$$

- (a) Recorrendo ao método de eliminação de Gauss resolva o sistema e classifique-o.
- (b) Transforme o sistema dado num sistema possível e determinado, alterando apenas uma das suas quatro equações. Determine o conjunto solução desse novo sistema, bem como o núcleo da respetiva matriz dos coeficientes.
- 2. Considere o seguinte sistema, onde γ é um parâmetro real

$$\begin{cases} u + (\gamma + 1)v + (\gamma + 1)w &= 0\\ 2u + (2\gamma + 2)v + (\gamma + 2)w &= (\gamma + 1)^2\\ (\gamma + 1)u + v + w &= 0 \end{cases}.$$

- (a) Discuta o sistema para todos os valores de γ .
- (b) Escolha um valor de $\gamma \neq -1$ para o qual o sistema seja possível e determinado. Para tal valor, seja D a matriz do sistema.
 - i. Determine D^{-1} pelo método de Gauss-Jordan.
 - ii. Resolva o sistema dado para o valor de γ que escolheu, recorrendo à matriz D^{-1} .

Nota: Caso não tenha conseguido resolver (a), tome $\gamma = 1$ para resolver (b).

Todas as alíneas valem 4 valores

Indique os cálculos auxiliares, responda de forma clara e justifique as suas conclusões.